## Characterization of encapsulated agrobiologicals

#### Anant Patel

Engineering and Alternative Fuels, Dept. of Engineering Science and Mathematics University of Applied Sciences, 33602 Bielefeld; Germany, email: anant.patel@fh-bielefeld.de

- Introduction
- overview of important characteristics
- shelf life
- enhanced efficacy



## **Encapsulation of active ingredients**

to solve storage and application problems

- A suitable capsule improves the characteristics of an active ingredient:
- → improved handling, protection of workers and clients
- → protection from biotic and abiotic stress factors
  - heat, dryness, UV light, contamination,...
- enhanced shelf life
- → slow/controlled release into a matrix from a "depot" or retain a.i.
  - controlled by environmental conditions and capsule material properties
- enhanced efficacy
- → application cost reduced by decreased number of applications
- → construction of bait formulations

Frost & Sullivan (2002). European Microencapsulation Technologies (Report B059) Burges HD (1998). Formulation of microbial pesticides. Dordrecht: Kluwer Academic Publishers Pflanzenschutz-Kurier 2/93. Die hohe Kunst des Formulierens

## Encapsulation of agrobiologicals Overview

#### Agrobiologicals

- biological control agents
- plant-growth promoting cells
- N-fixing microorganisms
- 🔶 mykorrhiza
- plant cells, esp. somatic embryos

## Encapsulation materials and methods Characteristics I

#### Materials

- > Molecular weight, distribution, degree of substitution, counter ions, gelation mechanism
- Rheology
- Primary, secondary, tertiary structures in solution
- Source, batch no.
- Toxicity, FDA approval
- → Cost about 5 €/kg

#### Capsules

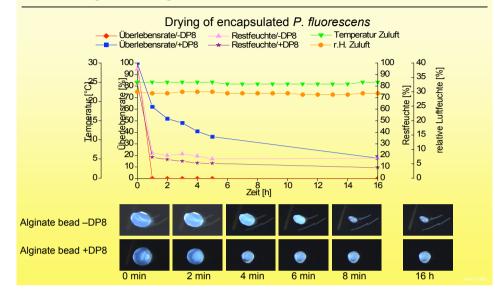
- Mechanical stability
- → Particle size, -distribution
- Physico-chemical parameters
  - diffusional characteristics: cut-off, internal and external diff. limitations
  - → redissolvability by pH, temperature, ion exchange, enzymatic, …
- Biological degradability
- → Form: capsule, foil, fibre, blocks, ...

## Encapsulation materials and methods Characteristics II

Moist and dried encapsulated cells

- Preconditioning
- Flowability
- Formulation additives

Fillers, humectants, drying protectants,...

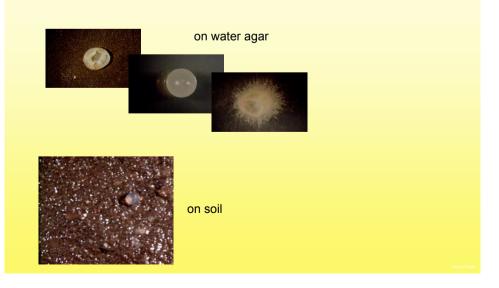

Reswelling

Key characteristics of commercial encapsulated agrobiologicals

- Shelf life
- Enhanced efficacy

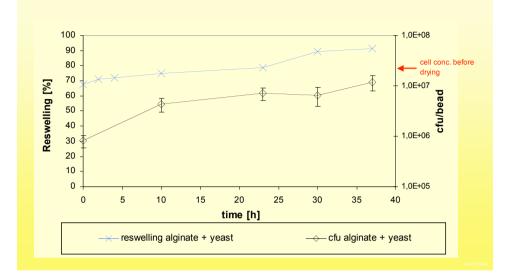
## **Characterization of reswelling**

**Reswelling and cell growth** 



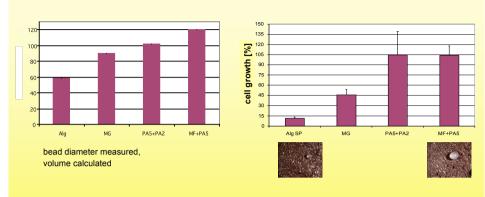

# Characterization of reswelling

## Reswelling and cell growth


| Test method                              | can be<br>standardized |
|------------------------------------------|------------------------|
| incubate in tap water                    | no                     |
| incubate in deionized water              | yes                    |
| incubate in 0.9 % NaCl                   | yes                    |
| place on wet filter paper                | yes                    |
| place on water agar                      | yes                    |
| place on quartz sand                     | yes                    |
| place on sterile or unsterile field soil | no                     |

## Characterization of reswelling Reswelling and cell growth




## Characterization of reswelling

Reswelling and cell growth

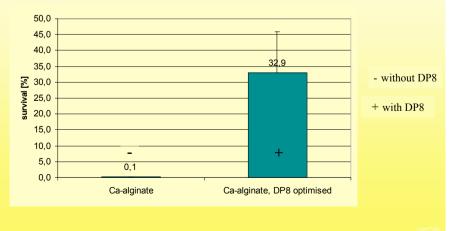


# Characterization of reswelling

Reswelling and cell growth



## Characterization of shelf life Determination of viability


- determination of cell viability
  - oxygen consumption
  - viability stains
  - → growth of cells out of capsule
  - 🔶 cfu
- viable but but not culturable ("vnbc")



vitality stain with acridin orange: bead diameter: 1.0-1.2 mm biomass content: ca. 2 % wet biomass 10<sup>7</sup> cfu/bead

## Characterization of shelf life Accelerated storage test

Influence of an optimised treatment with drying protectant DP8 on survival of dried *P. fluorescens* encapsulated in Ca-alginate beads



## **Characterization of efficacy**

Accelerated storage test

### overview

| microorganism         | reference                  |
|-----------------------|----------------------------|
| archaebacteria        | Sakane, T et al. (1992)    |
| Lactobaccillus brevis | Desmons, S. (1998)         |
| plant viruses         | Yordanova, A. et al (2000) |
| Lactococcus sp.       | Achour, M. et al (2001)    |

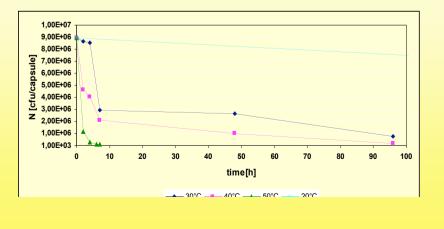
# Characterization of shelf life

## Accelerated storage test

### Basic idea:

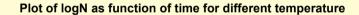
loss of cells during storage follows

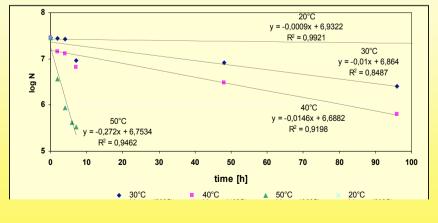
 $log N = log N_0 - k^*t$ k; specific rate of degradation, t: time


where k = f(1/T)

according to Arrhenius equation:

 $\log k = -(\Delta Ha/2303^{*}R)^{*}1/T$ 


# Characterization of shelf life

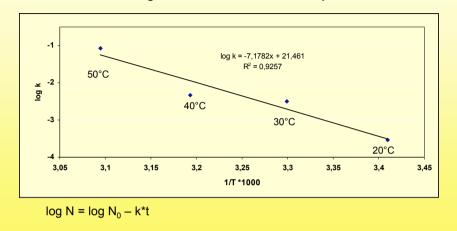

Accelerated storage test



### cfu as a function of time for different temperatures

## Characterization of shelf life Accelerated storage test

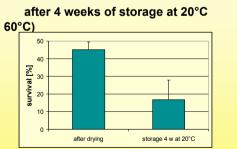





slope of the curves = k values

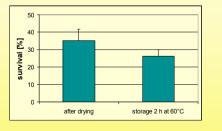
## Characterization of shelf life

Accelerated storage test


#### Plot of logk as function of different temperatures



 $k_i$ : specific rate of degradation, t: time


# Characterization of shelf life

Accelerated storage test



### Shelf life of encapsulated and dried *P. fluorescens* BA2002

accelerated storage test (2 h at



For a fast estimation of shelf life, incubate formulation 2 h at 60°C.

## Characterization of shelf life

Accelerated storage test

### Model for prognostication of cells alive after storage of formulation MF+PA5 at defined temperatures *T*

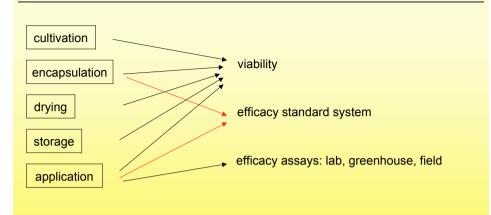
 $\log N = \log N_0 - 10^{-7,1782} (1/T \times 1000) + 21,461 \text{ xt}$ 

 $k_i$ : specific rate of degradation, T: Temperature Prognosticated and real cfu in formulation stored at 20°C) cfu / g capsules MF+PA5 capsules cfu / capsule 8.96\*10<sup>6</sup> 4,19\*10<sup>10</sup>  $N_0$  (Cfu at t=0 h) 3,66\*106 1,71\*1010 2 weeks storage 4,28\*106 1,97\*1010 2 weeks (prognost icated) 1,88\*106 8,78\*10<sup>9</sup> 4 weeks storage 4 weeks storage (prognosticated) 1,78\*10<sup>6</sup> 8.22\*109 Storage time temper ature cfu/ capsule cfu/g capsules 6 months 20°C 5,52\*10<sup>2</sup> 2.58\*106 12 months 20°C 3.00\*10 -2  $1.40*10^{2}$ 4°C 6,16\*10<sup>6</sup> 2,87\*10 10 6 months 4,24\*106 12 months 4°C 1.98\*1010

storage of cells suspended in NaCl resulted in 75 % cells less.

## Characterization of efficacy Method overview

Lab, greenhouse, field


Test system

- No standard systems available!
- Complex plant-pest-soil-capsule system
- → What works in the lab does often not work in the field

Data

- Dose-response curves
- → Effect of soil type, soil humidity, temperature, time of application,... on efficacy
- → Effect of capsule material, biomass concentration, drying, storage,... on efficacy

## Characterization of efficacy Method overview



## Characterization of efficacy Field trials

Field trials 2005 with encapsulated bacterial antagonists: application of granules



# Characterization of efficacy

**Establishment in soil** 



### Establishment of H. rhossiliensis by encapsulation in hollow beads

## Characterization of efficacy Field trials

#### Field trials 2004

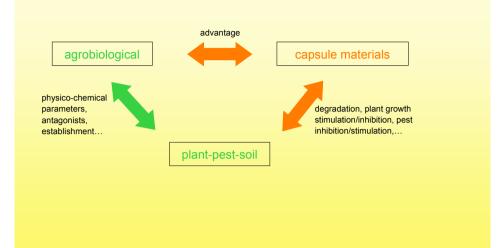
- Encapsulation of bacterial antagonists
  - → three bacterial strains (BA2002, F50, F54) raised in a bioreactor on ½ TSB medium.
  - → 60 g bacterial biomass + 540 g autoclaved baker's yeast + 3000 g of a biopolymer solution
  - → Jet Cutter into a 2 % CaCl<sub>2</sub> solution, 20 min crosslinking time
  - Drying of beads
- Application of bacterial antagonists
  - incorporated of encapsulated and free cells, respectively, in the pellet surrounding commercial sugar beet seeds.
  - Field trials
    - plot trial, six replications,
    - →at six locations in Europe
      - Germany, France, The Netherlands
    - → Efficacy: early and final emergence of seedlings in the field (most important parameters)

## Characterization of efficacy Field trials

### Field trials 2004 with encapsulated bacterial antagonists at Seligenstadt, Germany

| Early field emergence   |            |      |               |  |
|-------------------------|------------|------|---------------|--|
| Formulation             | Antagonist | [%]  | % of standard |  |
| bead                    | F30        | 71,1 | 112,1         |  |
| bead                    | F54        | 70,0 | 110,3         |  |
| bead                    | BA2002     | 68,0 | 107,3         |  |
| culture broth           | BA2002     | 67,7 | 106,8         |  |
| culture broth           | F54        | 66,1 | 104,2         |  |
| culture broth           | F30        | 64,9 | 102,3         |  |
| tandard (no pesticides) | -          | 63,4 | 100,0         |  |

Efficacy of bead formulation tended to be higher than the liquid formulation at the other five locations, too.


Experiment carried out by Dr. R. Tilcher, KWS Saat AG, Einbeck, Germany

## Characterization of encapsulated agrobiologicals Summary

- Overview of important characteristics
  - mechanical stability, particle size, -distribution, physico-chemical parameters, biological degradability, flowability, reswelling, formulation additives, preconditioning
- Reswelling
  - several test methods in or on media
  - → few data on reswelling properties and cell growth
- Shelf life
  - viability
  - → accelerated storage tests
- Efficacy
  - Iab, greenhouse, field
  - no standard test system
  - complex systems

## **Characterization of efficacy**

**Need for research** 

