UNIVERSITATEA DE ȘTIINȚE AGRICOLE ȘI MEDICINĂ VETERINARĂ CLUJ-NAPOCA

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

OUTLINE

- 1. Basics on Optical transitions and IR spectroscopy
- 2. FTIR applications versatile molecular fingerprint
- 3. Carbohydrate matrices: Recognition of IR markers
- 4. Case study: FTIR spectroscopy to identify specific oils in hydrocolloid /carbohydrate capsules
- 5. Needs for calibration/validation/standardization

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

FTIR SPECTROMETRY- A VERSATILE METHOD TO INVESTIGATE MICROCAPSULES' COMPOSITION

Prof. Dr. Carmen Socaciu

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

COST meeting, Luxembourgh, April 200

Main Optical Transitions: Absorption, Scattering, and Fluorescence

USANIV

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

Which molecules can absorb IR radiation ?

1. Polar molecules with a dipol moment

2. IR absorption is active when the energy of radiation =

the difference between the 2 vibrational and/or rotational levels.

3. Vibrational IR absorption is observed in organic molecules (fall in MIR region)

4. Rotational IR absorptions fall in far IR region.

	4000-3000 cm ⁻¹	3000-2000 cm ⁻¹	2000-1500 cm ⁻¹	1500-1000 cm ⁻¹	L'OR A	
	O-H	C=C	C=C	C-0	AN AN	
	N-H	C=N	C=O	C-F	Q	
	С-Н			C-Cl	0° °0	
				deformations	→	
				H_2O : 3657 cm ⁻¹		
<			3756 cm ⁻¹ 1594 cm ⁻¹			
The	most useful regions	v vibrations that				
168	0-1750 cm-1:	C=O stretches fear	Caller	cause a change in		
270	ctra and carbonylig 0-3100 cm-1	C-H stretching vibr	Cause			
320	0-3700 cm-1:	O-H and N-H strete	bands in IR spectra			

Cluj-Napoca, Romania

Department of Agrifood Chemistry and Biochemistry

University of Agricultural Sciences and Veterinary Medicine

IR spectranda, T) and BANDS

Figure 10 FTIR spectra of (a) Safranine-O, (b) (NaAlg/ AAm)IPN-Safranine-O system, (c) (NaAlg/AAm)IPN hydrogel.

http://www.ftir-libraries.com/ftir_databases.htm

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

11

Typical spectral regions for IR spectroscopy:

- near-IR: excites overtones or harmonics of fundamental vibrations (multiple level transition). Instrumentation - similar to UV-VIS absorption.
- 2. mid-IR: excites fundamental vibrations (single level transition). The most widely used for IR spectroscopy, generates spectral fingerprints of IR active organic molecules.
- 3. far-IR: excites low-energy vibrations and higher energy rotations. Few analytical uses, used in industry for quality control.

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

OUTLINE

- 1. Basics on Optical transitions and IR spectroscopy
- 2. FTIR applications versatile molecular fingerprint
- 3. Microcapsules characterization
- 4. Carbohydrate matrices: Recognition of IR markers
- 5. Case study: FTIR spectroscopy to identify specific oils in hydrocolloid /carbohydrate capsules
- 6. Needs for calibration/validation/standardization

FTIR –sensitive analytical technique

► Fast data acquisition -spectra are collected based on measurements using time-domain of IR radiation by temporal coherence of a radiative source.

Simple to operate, fast

≻Non-destructive

>Useful for fingerprint different samples (powders, extracts, emulsions, gels)

- >Better qualitative than quantitative
- >Need validation by accurate methods (GC, LC)

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

FTIR coupled with Attenuated Total Reflectance (ATR)

Most versatile instrumentation Micro diamond ATR objective to handle micro-areas

- The red area indicates the IR beam path
- Penetration depth can be controlled

To perform the analysis, the sample is placed in contact with the surface of an IR transmitting crystal. The IR light is reflected from the inside surface of the crystal, but also penetrates a small distance into the sample and therefore is partially absorbed.

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

13

15

OUTLINE

- 1. Basics on Optical transitions and IR spectroscopy
- 2. FTIR applications versatile molecular fingerprint
- 3. Carbohydrate matrices: Recognition of IR markers
- 4. Case study: FTIR spectroscopy to identify specific oils in hydrocolloid /carbohydrate capsules
- 5. Needs for calibration/validation/standardization

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

_8. V //					
Functional group and sibration	AG	CAR	GG	XG	СН
O-H stretching vibration	3244	3514 PolyOH groups	3299	3302	3289 O-H + N-H strech
C–H stretching of CH2 group	2926	2953, 2911, 2894	2884	-	2935
C-O stretching (COOH)	1597	-	1636	-	1651
Deformations of CH2 group (bending)	1408	1474, 1400	1408	1400	1428
O-H bending		1223 (S=O strech sulphate ester	1350	1247	
C-O and C-C ring stretching	1200-1000		1145	1150	1151
-CH2OH stretching mode	1054	1063	1054		1061
C-OH alcoholic (C-O stretching saccharide)	1024	1024		1025	1024
-CH2 twisting vibration	948, 902, Gululonic & mannuronic	924, 910 Polyhydroxy groups	1016		
Glycosidic links	809	842 Galactose sulphate, glycosidic link	866,777 (1,4; 1,6) link galactose and mannose	785 C-H rocking, bending C-C stretching	892 , 776

OUTLINE

- 1. Basics on Optical transitions and IR spectroscopy
- 2. FTIR applications versatile molecular fingerprint
- 3. Carbohydrate matrices: Recognition of IR markers
- 4. Case study: FTIR spectroscopy to identify specific oils in hydrocolloid /carbohydrate capsules
- 5. Needs for calibration/validation/standardization

AG GG

1000

Wavemunber (cm

Numar de unda (cm⁻¹)

Encapsulation induces:

✓Increase abs at 3400

against HPO

(high water absorption, less oil %)

22

✓LW Shifts in reg. 1000-1500

0.05

0.00

4000 3500 3000 2500 2000 1500

27

OUTLINE

- 1. Basics on Optical transitions and IR spectroscopy
- 2. FTIR applications versatile molecular fingerprint
- 3. Carbohydrate matrices: Recognition of IR markers
- 4. Case study: FTIR spectroscopy to identify specific oils in hydrocolloid /carbohydrate capsules
- 5. Needs for calibration/validation/standardization

Department of Agrifood Chemistry and Biochemistry University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania

5-points-conditions for standardization

- To make adequate and accurate interpretation of FTIR spectra of encapsulated target molecules in specific (polysaccharide) matrices, some *sine qua non* conditions have to be respected:
- 1. Correct and adequate calibrations (FTIR-ATR spectra) with free matrices
- 2. Adequate calibrations with "empty microcapsules" containing the matrix hydrogels without target molecules
- 3. Evaluation of the FTIR-ATR) fingerprint of the target molecule in its free form (oil, oleoresin, oleosomes)
- Complementary quantitative analysis of target molecules by GC-FID or HPLC-PDA using standardized methods
- 5. Elaboration of standardized protocols for microcapsule composition via FTIR(ATR) – HPLC (GC) complementary methods
- Such protocols can cover qualitative and quantitative evaluations of microcapsule composition and stability $% \left({{{\left({{{{\bf{n}}}} \right)}_{i}}}_{i}} \right)$

