

Encapsulation of food a global research ac	nd flavours: tivities
Key words	No. of records
Microencapsulation and food	223
Microencapsulation and oil	496
Microencapsulation and fatty acid*	78
Microencapsulation and vitamin*	43
Microencapsulation and antioxidant*	41
Microencapsulation and oleoresin*	17
Microencapsulation and volatile	43
Microencapsulation and flavour	25
Microencapsulation and essential oil	30
Microencapsulation and aroma	22
COST865 Spring 2009 Meeting, Luxembourg, April 24-25	SCI-EXPANDED: 1990-2009

h	83 🐜
	Y

Characteristics of the wall material used for encapsulating flavours

Wall material	Interest
Maltodextrin (DE < 20)	Film forming
Corn syrup solid (DE > 20)	Film forming, reductability
Modified starch	Very good emulsifier
Gum arabic	Emulsifier, film forming
Modified cellulose	Film forming
Gelatin	Emulsifier, film forming
Cyclodextrin	Encapsulant emulsifier
Lecithin	Emulsifier
Whey protein	Good emulsifier
Hydrogenated fat	Barrier to oxygen and water

Wall materials: binding data for the interactions between 2-nonanone and milk proteins (25 °C)

	n	K [M ⁻¹]	Reference
WPC	61	1920000	Jasinski and Kilara (1985)
	0.2	53000000	Liu and others (2005b)
WPI	1	2059	Zhu (2003)
Sodium caseinate	0.3	1858	Zhu (2003)
β-Lg	1	2439	O'Neill and Kinsella (1987)
	0.2	6250 (< 40 ppm)	Charles and others (1996)
	0.5	1667 (≥ 45 ppm)	
	14	122	Jasinski and Kilara (1985)
α-La	33	11	Jasinski and Kilara (1985)
BSA	5–6	1800	Damodaran and Kinsella (1980b
	15	14100	Jasinski and Kilara (1985)
	7	833	Jung and others (2002)
n, numi K	oer o (, intr	f binding site insic binding	es per monomer constant

the using of spray-drying	
Advantages	
Low operating cost	
High quality of capsules in good yield	
Rapid solubility of the capsules	
Small size	
High stability capsules	
Disadvantages	
Produce no uniform microcapsules	
Limitation in the choice of wall material	
(low viscosity at relatively high concentrations)	
Produce very fine powder which needs further processing	
Not good for heat-sensitive material	

freeze-dried durian

spray-dried durian

Fieldose from wheat, DE 14-16

(b) Glucose syrup solid GSS from corn, DE 12-15

(c) Pasilli from potato, DE 18

Che Man et al., 1999

Char	acteristics o	f encap	sulatio	n processes
	Encapsulation method	Particle size	Max. load (%)	References
Chemical techniques	Simple coacervation	20-200	<60	Richard & Benoît, 2000
	Complex coacervation	5-200	70-90	Richard & Benoît, 2000
	Molecular inclusion	5-50	5–10	Uhlemann <i>et al.</i> , 2002
Mechanical techniques	Spray-drying	1–50	<40	Richard & Benoît, 2000
	Spray chilling	20-200	10-20	Uhlemann et al., 2002
	Extrusion	200-2000	6–20	Uhlemann et al., 2002
	Fluidised bed	>100	60-90	Richard & Benoît, 2000
Matrix Particle Microsphere	Fill Material Capsule Shell Microcapsule	morp to pr	Particle hology c achieve oduct pe	Madene et al. 2006 size and an be tailored the desired rformance
OST865 Spring 2009 Meetin Luxembourg, April 24-25	g, Ado	pted from S	WRI <u>microenc</u>	capsulation.swri.org

1	Ø
1	82 🔭

The capsules should retain core flavour and entrap it inside the wall

Encapsulating agent	Total oil, %		Surface oil, %		Efficiency, %		у,	Moisture, %		
Whey protein concentrate		80.7			1.9			78.8		3.5
WPC+MD N-lok (9:1)		87.8			2.0			85.9		2.9
WPC+MD Encaps 855 (9:1)		85.5			2.5			83.0		3.7
WPC+MD Capsul-E (9:1)		84.1			2.4			81.7		2.7
Skimmed milk powder		76.1			2.0			74.1		3.3
SMP+ MD N-lok (9:1)		71.0			1.4			69.6		2.2
SMP+ MD Capsul-E (9:1)		70.9			1.0			69.8		2.5
SMP+ MD Encaps 855 (9:1)		69.2			1.2			68.1		3.0
Characteristics of caraw	ay	oil en	cap	su	lation	wit Bj	h o /lai	differe té et al.,	nt 20	matrices

Encapsulation technique	Controlled release mechanistic					
Simple coacervation	Prolonged release					
Complex coacervation	Prolonged release (diffusion) and started release (pH, dehydration, effect mechanical, dissolution or enzymatic effect					
Spray drying	Prolonged release and started release					
Fluid bed drying	Started release (pH or heat treatment)					
Extrusion	Prolonged release					

