

agenda

Se Da

- Consumer needs of food products
- Advantages & Disadvantages of encapsulates
- Requirements & Design of encapsulates
- World of food encapsulates
- Example: how to select fish oil encapsulates?

Disadvantages	
 Additional costs 	
Increase complexity	
 During production process 	
 In supply chain 	
Undesirable consumer not	ice
 Visually 	
- Feeling	
Stability challenges of enc	apsulates
- Processing	
 Storage within the food proc 	lucts

Requirements for encapsulates Up

- Physico-chemical characteristics of actives
 - particle size, water-solubility or not, etc.
- Process conditions of food products
- Storage of encapsulates
 - prior use
 - In food products
- Incorporation in food product
 - particle size
 - Density
- Trigger(s) and mechanism(s) of release
- Cost constraints

Design of encapsulates	A
Coating	
 Encapsulation process 	
Loading	
Legal issues	
- Food grade, use of crosslinkers,	
Halal or Kosher status	
Freedom of use & IPR status	
Proper supply chain	
- Sufficient quantities	
- Constant quality	
– Right time	
	-

Fish oil fortification

• We do not eat enough omega-3 fatty acids

9

- Recommended dose is 0.4-1.0 g per day
- The actual dose is 0.15 g per day
- Fortification of food with fish oil is an elegant way to fill this gap
 - Problem: Oxidation, resulting in fishy off-flavours

Prevention of fish oil oxidation
 High quality of fish oil and proper handling Reduce oxygen concentration Add antioxidants Lower the storage temperature Scavenge metal ions (iron or copper) by means of sequestrants in the water phase, if present Exclude light
 Design of food microstructure and composition. oxidation in a water-in-oil emulsion might differ from an oil-in-water emulsion, use of positively charged emulsifiers and thickeners of the interfacial layer of emulsions may repel metal ions

Alternatively, encapsulation can reduce oxidation

N.J. Zuidam & C.M. Beindorff, CRS Newsletter 24(4), 22-24, 20

Fish oil microencapsulates

Microencapsulation may prevent off-flavour by:

- preventing contact between oxygen and fish oil,
- preventing contact between metal ions and fish oil,
- preventing direct exposure to light,
- trapping off-flavour

Duralife[®] from Firmenich

Meg-3[®] from ONC

lechnology	Load (wt.% of dry weight)	Particle size (µm)	Water- soluble?	Expected price range
Spray-drying	1-60	10-400	Yes	Low
Melt injection	10-20	200-2000	Yes	Middle
Submerged co-extrusion	70-95	1000-5000	Yes	High
Complex coacervates	40-90	10-800	No	Middle
Vicrospheres	20-50	10-800	No	Middle
Calcium carbonate capsules	25-40	20	Only at low pH	High
/-cyclodextrin + drying	15-40	≤100	yes	Middle?

Supplier	Trade name	Technology	Water soluble?	Expected price range
Arjuna, India	Zepufa	Spray-dried powder	yes	low
BASF, Germany	Dry n-3	Spray-dried gelatine/caseinate/sugar matrix with a starch coating.	yes	low
OSM, The Netherlands	Ropufa	Spray-dried cornstarch-coated matrix of gelatine and sucrose	yes	low
The Wright Group, USA	Supercoat Omega-3	Spray-dried starch/protein matrix	yes	low
National Starch, USA	Novomega	Spray-dried powder based on modified starch and soy protein	yes	low
Kievit, The Netherlands	Vana-Sana	Spray-dried powder produced by spraying on a moving belt	yes	low
National Starch, USA	Novomega	Spray-dried powder	yes	low
Nu-Mega, Australia	Driphorm	Spray-dried powder with Maillard products	yes	low
Wacker, Germany	OmegaDry	Complexation with γ-cyclodextrin in water, followed by vacuum drying	yes	middle
Firmenich, Suisse	Duralife	Melt injection with matrix based on maltodextrin and sugar	yes	middle
Dcean Nutrition Canada, Canada	Meg-3	Dried complex coacervates of gelatine and polyphosphate	No	middle
Kitii Corp,, Japan	Calshell	Calcium carbonate precipitation	only at low pH	high
Morishita Jintan, Japan		Submerged co-extrusion	yes	high
Denomega, Norway	Denomega GAT 100	Calcium alginate microspheres prepared via	no	middle

Selection criteria of microencapsulate	
 physico-chemical characteristics of the encapsulates 	
 particle size, water-solubility or not, etc. 	
costs	
 stability during supply chain, processing and/or storage in a food product 	
 may depends on the composition of the food matrix and packaging 	
 quality and safety of the fish oil 	
 including the absence of off-flavours, pesticides, EPA/ DHA ratio, and high EPA and DHA content 	
 bioavailability of the fish oil, 	
commercial available quantity	
legal status	
- food grade and, e.g., the use of crosslinking agents	
· optionally, availability in Halahor/Koshersquality, 22-	24, 2

Conclusions

E: Da

- Encapsulates might be used in food products
 - Benefits should overcome negatives
 - In general, encapsulation is not a first choice
 - only use them if proper food product design fails
- Three stages in the use of encapsulates
 - Encapsulation of the active
 - Incorporation of encapsulates in the consumer product
 - Proper release of active upon use
- Selection of the right encapsulates from the right supplier is a competitive edge for a food company like Unilever

