Materials for Food Encapsulation -State of the Art Overview

Christine Wandrey

FPFI - I MRP

COST865 Spring 2008 Meeting **Bioencapsulation Science to Application**

Ljubljana, Slovenia April 25-26, 2008

Switzerland

Swiss Federal Institute of Technology Lausanne

COST865 Spring 2008 Meeting April 25-26. Liubliana. Slovenia

General requirements

Certified for food applications: **GRAS** = Generally Recognized As Save Able to form a matrix, coating or capsule, to entrap solid, liquid or gas

General functions

- Protection of the core material/active (degradation, reaction)
- Improvement of active handling (conversion of liquid to powders)
- Masking of flavor or odor
- Separation of components (avoid incompatibility)
- Release control (time, location)
- Adjustment of properties (size, color)
- Creation of special effects (visual, by feel, health benefit)

>

Swiss Federal Institute of Technology Lausanne Switzerland

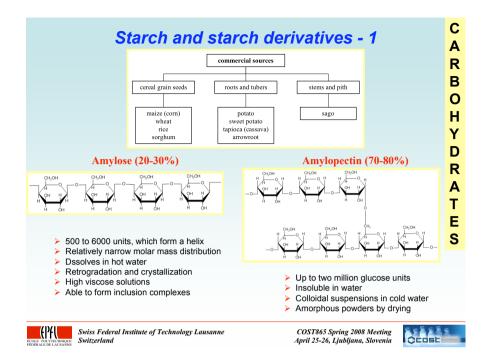
COST865 Spring 2008 Meeting April 25-26. Liubliana. Slovenia

Groups of natural materials for microencapsulation in the food industry

Origin	Carbohydrate	Protein	Lipid
Plant starch and derivatives		gluten (corn)	fatty acids/alcohols
	cellulose and derivatives	isolates (pea, soy)	glycerides
	gums		waxes
	soluble soybean polysaccharide		phospholipids
Marine	gums		
	alginate		
Animal/	gums	caseins	fatty acids/alcohols
Microbial	chitosan	whey proteins	glycerides
	dextran	gelatin	waxes
Í			phospholipids
			(shellac)

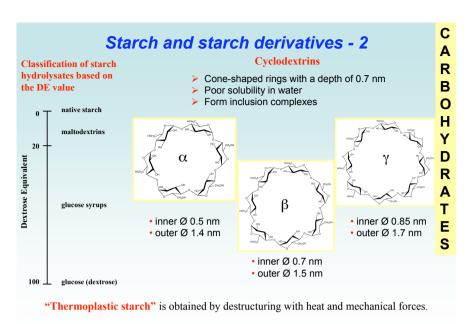
Other suitable materials

- polyvinylpyrrolidone (PVP)
- paraffin
- inorganic materials



CARBOHYDRATES Saccharides - Polysaccharides

- Homo- and copolymers of sugar residues and/or their derivatives
- Enormous variety occurring in plants, animals, bacteria, fungi, and algae
- > Tremendous economical importance
- World consumption exceeds the production of all synthetic polymers.


Cellulose and cellu

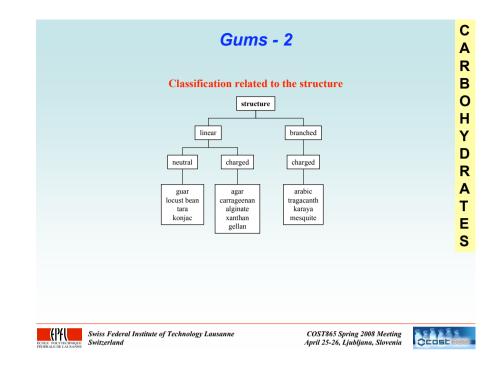
Cellulose

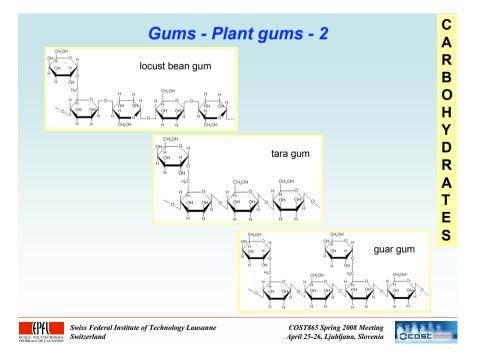
- Insoluble in water and other solvents
- > Hydroxyl groups are subject of substitution
- > Properties of derivatives are:
- solubility in water
- thermoreversible gelation - film formation ability
- polyelectrolyte behavior
- surface activity

Ilose derivatives Food grade cellulose derivatives			
methyl	DS 1.3-2.6	B	
ethyl	DS 2.1-2.6	0	
hydroxypropyl	DR 4	H	
hydroxypropyl	DS(methyl) 0.9-1.8	Y	
methyl	DR(HP) 0.1-1.0	D R	
ethyl methyl	ethyl methyl		
carboxy methyl (Na)	DS 0.4-1.4	A	
ethyl hydroxyethyl		Τ	
crosslinked CMC		E	
DS : degree of substitution – average number of substituted hydroxy groups per saccharide unit; different information from different sources, widest range taken.			

DR: degree of reaction - average number of reagent molecules reacted with one saccharide unit

(PAL Swiss Federal Institute of Technology Lausanne COST865 Spring 2008 Meeting Switzerland April 25-26, Ljubljana, Slovenia Ocosta


 Complex macromolecular substances which are either soluble in water or, although insoluble in water, swell while taking up high amounts of water. Form viscous solutions or dispersions and are therefore considered as hydrocolloids. Some gums are mixtures of oligomers and polymers of different chemical structure and/or chain architecture. 	C A R B O H Y
Classification related to the source source seawced plants microbial red brown roots exudates seeds	D R A T E S
agar carrageenan alginate konjac arabic tragacanth karaya mesquite guar locust bean tara	



	Gums - Plant gums - 1	C A	
Gums/exudates form a ba Only a few plant species	read in the plant kingdom. It results from wounding, heat, drought. arrier at lesion hindering the invasion of microorganisms. are cultivated at present to obtain gums for use in the food industry. o the Leguminosae family.	F	
gum arabic (GA)	branched; negatively charged; odorless, tasteless; highly water-soluble	7 F	
(gum acacia)	with conc. up to 50 wt%; Newtonian solution behavior up to 40 wt%; protective film formation around oil droplets; emulsifier; stabilizer	١	
gum tragacanth two components: 1) water-swellable component – basso r in			
0 0	2) water-soluble component - tragacanthin	F	
	branched; negatively charged; one of the most acid-resistant gums;		
bi-functional emulsifier; viscous solutions even at low conc.		ŀ	
gum karaya	pseudoplastic; protective film formation around oil droplets branched; negatively charged; one of the least soluble of the exudates	1	
gum nur uj u	gums (10 % in cold water, 30% in hot water)		
mesquite gum	branched; negatively charged; solubility comparable to GA, but steeper increase of the viscosity; good film formation	5	
galactomannans	linear; neutral; different solubility: guar gum > tara gum > locust bean		
- LBG, tara, guar			
pectin	soluble in water; low viscosity compared to other gums;	Τ	
	at low conc. Newtonian at higher conc. pseudoplastic solution behavior; non-permanently charged; complicated gelation behavior		

Swiss Federal Institute of Technology Lausanne Switzerland COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia

С

A R

B O

н

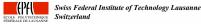
Υ

D

R

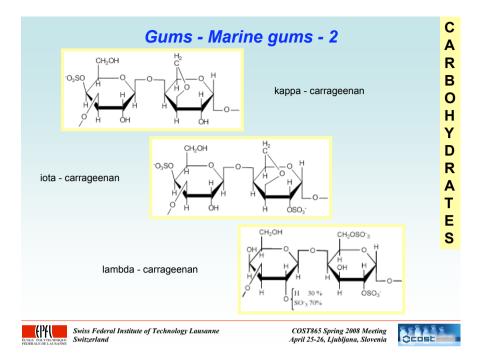
Α

т

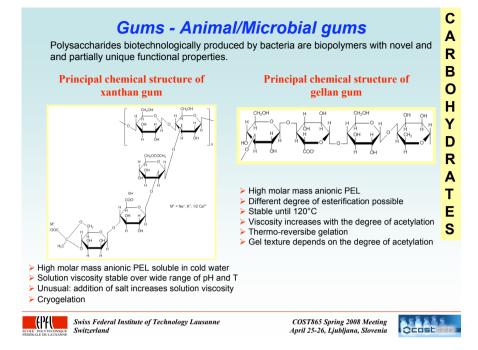

Е

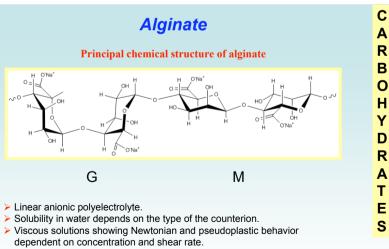
S

Gums - Marine gums - 1

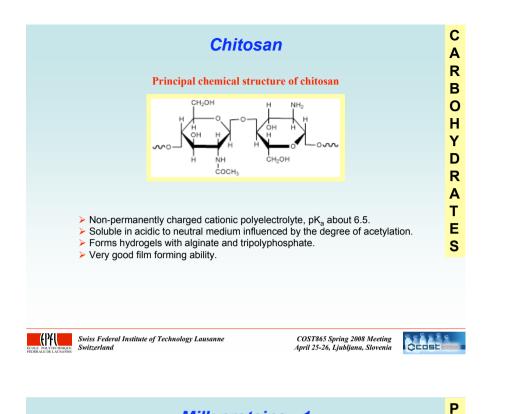

Selected properties of carrageenans

property	carrageenan type			
property	kappa	iota	lambda	
solubility in hot water	$T > 70^{\circ}C$		soluble	
solubility in cold water	Na-salt soluble; from limited to high swelling of K-, Ca-, and ammonium salts	Na-salts soluble, Ca-salts give thixotropic dispersions	all salts soluble; viscous pseudoplastic solutions	
gel formation	thermo-reversible gels on cooling in the presence of appropriate counterions			
gelation	strongest with K	strongest with Ca	non colling	
gel type	brittle with syneresis; poor freeze-thaw stability	elastic, no syneresis; good freeze-thaw stability	non-gelling	
pH stability	stable at neutral alkaline pH; pH=3.5: hydrolysis of solutions but gels are stable		hydrolysis below pH 4.3	
salt tolerance	poor	good	good	




COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia

Soluble soybean polysaccharide	A
(SSPS)	F
hemistry	E
Chains composed of a number of different sugar units of different quantity.	C
Negatively charged units are located in the polymer backbone, anionic PEL.	H
Short side chains contain neutral sugar units.	Y
Irigin	C
Extracted from okara, the residue after oil and soy protein extraction from soybean.	F
roperties Soluble in cold and hot water yielding solutions of relatively low viscosity. SSPS solution do not gel. Excellent adhesion and film forming properties. Films are colorless, transparent, water-soluble.	A T E
Prevent oxidation of oils. Can be used as emulsifier and stabilizer for emulsions	5



- > Hydrogel formation with multivalent counterions and positively charged PEL.
- > Alginate powder and solutions are subject to chain degradation if not appropriately stored.

Milk proteins - 1

Casein fractions and some characteristics typical for bovine milk

parameter	caseins				
parameter	α_{s1} - casein	α_{s2} - casein	β - casein	к - casein	
conc. %	0.9 - 1.5	0.3 - 0.4	0.9 - 1.1	0.3 - 0.4	
isoionic pH	4.94	5.45 - 5.23	5.14	5.61	
molar mass ×10 ⁻⁴ g/mol	2.36	2.52-2.54	2.4	1.9	

Whey protein fractions and some characteristics typical for bovine milk

parameter	whey proteins			
parameter	α - lactalbumin	β - lactoglobulin	immunoglobulins	serum albumin
conc. %	0.07 - 0.15	0.2 - 0.4	0.06 - 0.1	0.01 - 0.04
isoionic point	4.2-4.5	5.2		5.3
molar mass ×10 ⁻⁴ g/mol	1.4	1.8	15-90	6.6

Ennis et al. in: Handbook of hydrocolloids, 2000, pp. 189-217

(PH Swiss Federal Institute of Technology Lausanne ECOLE POLYTECHNIQUE Switzerland

COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia

R

0 т Ε

Ν S

PROTEINS	F F
Natural macromolecules composed of linear chains of amino acids.	0
Gluten	I E I
 Complex mixture of - gliadins (monomeric gluten proteins) and glutenins (polymeric gluten proteins) 	N S
 Gliadins: soluble in distilled water but aggregate in salt solution. Glutenins: very low solubility in water. 	
Gliadins have higher ability than glutenins to reduce the surface tension.	
Elastic film formation	

(P) Swiss Federal Institute of Technology Lausanne Switzerland

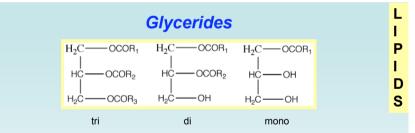
COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia

Milk proteins - 2	P
	R
Caseins	0
> Extremely heat stable proteins, do not coagulate by heat.	Т
Insoluble at their isoelectric point, at about pH 4.6.	E
 Solubility varies with the pH. Good surface active properties. 	1
 Good fat emulsifiers 	N
> Water vapor permeability of films depends on the protein type.	
	3
Whey proteins	

- Globular proteins
- > Soluble in the ionic environment of milk
- > Become insoluble at their isoelectric point of about pH 5 at very low ionic strength.
- > Denature at temperatures above 70°C.
- > Form thermally irreversible gels of different quality.
- Good surface active properties.
- > Films formed by thermally induced disulphide cross-linking are excellent gas barriers.
- > Cold gelation occurs by adding calcium to a preheated mixture.
- > Continuous and homogeneous membranes by self-aggregation around oil droplets.
- (Pf) Swiss Federal Institute of Technology Lausanne Sanne Switzerland

COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia

Gelatin	P R	
> Heterogeneous mixture of single or multi-stranded polypeptides.	O T	
 Pure form: translucent brittle solid substances, colorless or slightly yellow, almost tasteless and odorless. Melt when heated and solidify when cooled again. 	E I	
 Dissolves on hot water and gels on cooling below 35-40°C, thermo-reversible gels. Also soluble in most polar solvents. Gelatins are amphiphilic, 	N S	
 The quality and properties depend on the process of manufacturing: type A gelatin is obtained by acidic treatment of collagen - isoelectric point pH 7 to 9.4 type B gelatin is obtained by alkaline treatment - isoelectric point pH 4.8 to 5.5 		
 Good emulsifying properties. Can form hydrogels by PEL complex formation with both anionic and cationic PEL. 		


> Gelling properties of warm-blood animal are superior to fish skin gelatin.

Switzerland

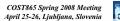
Swiss Federal Institute of Technology Lausanne

COST865 Spring 2008 Meeting April 25-26, Liubliana, Slovenia CCOSt

> Di - and monoglycerides have emulsifying properties.

> The melting points strongly depend on the chemical nature and the symmetry.

Waxes


> Waxes are esters of fatty acids. In contrast to fats and oils, the fatty acids are not esters of glycerol but of higher primary monovalent alcohols.

Beeswax: melts in the range 62 to 64 °C Carnauba wax: one of the hardest natural waxes; melts in the range 78 to 85°C. Candelilla wax: not as hard as carnauba wax; melts in the range 67 to 79°C.

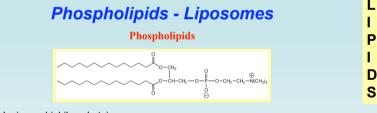
> The waxes are compatible with each other and most oils, fatty acids, glycerides, hydrocarbons.

Swiss Federal Institute of Technology Lausanne

LIPIDS

Characteristic for lipids is their general insolubility in water; they are hydrophobic. Lipids involve molecules and substances of large diversity and structural variety. Examples are: oils, fats, waxes, phospholipids.

Fatty acids and fatty alcohols


- Two subgroups of fatty acids:
- saturated acids, monocarboxylic acids of the overall formula CH₂(CH₂)_nCOOH - unsaturated acids, having one or more double bonds in the chain.
- Fatty alcohols: a hydroxyl group has replaced the carboxylic group.
- Solubility and melting point of fatty acids vary with chain length.
- > Fatty alcohols behave as nonionic surfactants and have emulsifying properties.

Swiss Federal Institute of Technology Lausanne Switzerland

COST865 Spring 2008 Meeting April 25-26, Liubliana, Slovenia

- > Ionic amphiphiles betains
- > Emulsifiers and dispersing agents
- > Lecithin (phosphatidylcholin) is the most abundant, where the base is cholin.

Liposome

- > In water: phospholipids aggregate or self-assembly into well organized and defined structures - bilayers, which can be forced to form liposomes.
- > Liposomes are kinetically stable but not thermodynamically.
- > Important parameter:
- gel to liquid crystalline transition temperature

(Pf) Swiss Federal Institute of Technology Lausanne Switzerland

aqueous

exterio

interior

	Others	5	
Polyvinylpyrrolidone	 Soluble in water a Aqueous solutions Good film formation 	nd organic solvents s exhibit Newtonian behavior.	
× ×		with the general formula C_nH_2 as n > 20. It is white, odorless 95°C, dependent on n.	
Exact chem	•	(Kerria lacca). (probably a network of various is are of superior durability and	,
Inorganic materials	 Tripolyphosphate Silicon oxides Aluminum oxides Calcium carbonate 		
COLE POLYTECHNOLE FROMALE DULYTECHNOLE Switss Federal Institu	te of Technology Lausanne	COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia	Ocustaes

Α	ppl	lica	tio	ns	-	-
				_		

Material	Application	Technology
maltodextrin, gum arabic,	instant beverages, confectionary,	spray drying,
modified starch	instant desserts	fluidized spray drying
	tea, chocolate fillings, pretzels	compacting
	instant beverages	agglomeration
	chocolate, instant soups and sauces,	continuous fluidized bed
	instant beverages, tea	granulation,
		rotor granulation
maltodextrin,	chocolate, instant soups and sauces,	extrusion
modified starch	instant beverages, tea	
hydrogenated oil,	any moist food with heat treatment	spray chilling
fractionated vegetable oil		
cyclodextrrin	top note protection	molecular inclusion
gum arabic, gelatin	chewing gum, instant soups and	coacervation
	sauces, baked goods	
alginate	chewing gum, confectionary	free nozzle
gelatin	chewing gum, confectionary, instant	submerged nozzle
	soups and sauces, instant beverages	

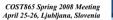
adopted from J. Uhlemann et al. symrise, 2008

Swiss Federal Institute of Technology Lausanne

Materials Properties

Primary characteristics - molecule properties

- > Chemical composition
- > Molecular architecture
- > Molar mass, molar mass distribution
- > Homogeneity, heterogeneity


Secondary characteristics - substance properties

- > Solubility
- Rheology of solutions and melts
- > Film formation ability, film quality
- Surface activity
- > Stability, durability, degradability
- > Melting point, boiling point, glass transition temperature

Knowledge of the relationships between primary and secondary characteristics supports the goal-directed design, development and optimization of encapsulates.

()) Swiss Federal Institute of Technology Lausanne Switzerland

Applications - 2

Active	Material for encapsulation	Reference
vitamin C,	a) maltodextrin of DE20	a) Righetto, 2006
acerola,	mixture DE20/gum arabic (GA);	
synthetic ascorbic acid	b) maltodextrin DE25, GA, or mix of both	b) Righetto, 2005
vitamin C	tripolyphosphate/chitosan	Desai, 2005, 2006
vitamin E	starch	Chen, 2004
vitamin A acetate dissolved in coconut oil	Hi-CAO 100 (starch octenylsuccinate, OSA-starch)	Xie, 2007
conjugated linoleic acid (CLA)	whey protein concentrate (WPC), gum arabic (GA), blend WPC/maltodextrin 10DE (1:1, w/w)	Jimenez, 2006
linoleic acid	gum arabic	Fang, 2005
European pear aroma	α -cyclodextrin (CD), GA, soybean soluble polysaccharide (SSPS), highly branched cyclic dextrin (HBCD)	Tobitsuka, 2006
	cyclodextrins	Tobitsuka, 2005
oregano, citronella, and marjoram flavors	milk-protein based matrices: WPC, skimmed milk powder (SMP)	Baranauskiene, 2006
Bifidobacterium lactis	hydrated gellan, xanthan gums	McMaster, 2005
Bifidobacterium PL1	starch	O'Riordan, 2001
probiotic bacteria L. acidophilus B. lactis	alginate/Hi-Maize TM starch	Kailasapathy, 2006
probiotics, L. acidophilus 547 B. bifidum ATCC 1994, L. casei 01	alginate/CaCl ₂ /chitosan	Krasaekoopt, 2006

(Pf) Swiss Federal Institute of Technology Lausanne ÉCOLE POLYTECHNIQUE Switzerland

Applications - 3

Active	Material for encapsulation	Reference
B. breve R070, B. longum R023	milk fat, denaturated whey proteins	Picot, 2004
lactobacillus sp.	gum arabic (GA), gellan gum (GG), mesquite gum	Yáñez-
	(MG), and binary mixtures thereof	Fernánandez, 2007
lipids	various polysaccharides	Kikuchi, 2006
lipids: oleic acid, linoleic acid, stearic acid	potato starch, waxy maize starch, tapioca starch	Kapusniak, 2006
vegetable oil	maltodextrin/GA, 3/2, w/w	Fuchs, 2006
fish oil	a) modified cellulose, skim milk powder,	a) Kolanowski,
	mixture of fish gelatin/corn starch	2007
	b) methylcellulose (MC), hydroxypropyl	b) Kolanowski,
	methylcellulose (HPMC), maltodextrin	2004
	modified starch	Tan, 2005
tuna o/w emulsion	lecitin-chitosan, corn syrup	Klinkesorn, 2006
ferrous sulfate + ascorbic acid	liposomes	Kosaraju, 2006
iron (ferric pyrophosphate), iodine	hydrogenated palm fat	Wegmüller, 2006
(potassium iodate), vitamin A		
chitooligo-saccharide	polyglycerol monostearate (PGMS)	Choi, 2006
anthocyanin pigments of black carrot	maltodextrins: DE 10, DE 20-23, DE 28-31	Ersus, 2007
isoflavone,	medium-chain triacylglycerol (MCT),	Kim, 2006
β-galactosidase	polyglycerol monostearat (PGMS)	
allyl isothiocyanate -AIT	gum arabic	Chacon, 2006
(pathogeness inhibitor)		

ECCLE POLYTECHNOLE BEDERLE DE LAURANNE Switzerland

Acknowledgements

Redouan Mahou Ingrid Margot

COLE POLYTECHNOLE Scole POLYTECHNOLE Swiss Federal Institute of Technology Lausanne Switzerland

COST865 Spring 2008 Meeting April 25-26, Ljubljana, Slovenia

